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Abstract—A Model Predictive Control (MPC) is a system de-
signed to control a production plant. These systems are composed
of several phases, being one of the most important ones the
phase for the prediction of the plant situation in a given time.
In a previous work, we presented a machine-learning approach
for this prediction phase that replaced the need of developing a
single mathematical function with a more generic classification
approach. However, standalone classifiers had some drawbacks
like to select the most adequate classification models for the
learning data and task. In this paper we extend our previous
work with a general method to foresee Dross defects building a
meta-classification system through the combination of different
methods and removing the need of selecting the best algorithm
for each objective or dataset.

I. INTRODUCTION

Manufacturing processes exist since ancient times. Over
time, the manufacturing process has allowed transforming
raw materials into finished products. Manufacturing has been
improved due to the technological progress and the evolution
of our society.

Thus, and with the help of multiple disciplines of knowl-
edge, it is possible to anticipate several problems in the
manufacturing process, avoiding them. The goals of these
systems are: (i) minimise costs, (ii) maximise the production
rate, (iii) minimise the stock, (iv) control the price fluctuation
and (v) avoid service failures caused by hidden product defects.
Typically, an exhaustive production control is carried out in
order to ensure that the results achieved in the measurements
of the aforementioned objectives are within normality. Unfor-
tunately, many of them can only be measured once the products
have already been finished.

As an improvement of the manufacturing process, the engi-
neers try to determine the outcome of the final product before
even producing it. The so-called Model Predictive Control
systems (MPC) [1] are method designed for these goals. These
algorithms are capable of controlling a specific manufacturing
process. Besides, their objective is to try to keep the production
of the plant under a normality, tuning the variables of the
process to fulfil the constraints defined during the design
of the system. Originally, these systems were developed to
control the specific needs of a few industries, i.e., power plants

and oil refineries. However, MPC technology is currently
used in a wide range of industries such as chemical, food
processing, automotive and aerospace applications [2].Despite
its popularity, MPC systems have several limitations and some
of them are related with the prediction step.

A way to reduce their drawbacks is the employment of
machine learning methods: standalone classifiers are capable of
obtaining good results in the prediction of several defects in the
manufacturing process. However, there are several limitations
of this approach: (i) we cannot be sure that the selected
classifier is the best one to generalise the manufacturing
process, (ii) the learning algorithms employed for creating
some machine-learning classifiers only find a local maximum,
hence, the final result may not be the optimal one and (iii)
the nature of a standalone classifier is unique and, therefore,
that classifier might not fit to the nature of the manufacturing
process (linear or non-linear). A solution for these problems
is the combination of standalone classifiers.

Against this background, we present here a meta-
classification technique to enhance the prediction stages in an
MPC system. These methods are able to learn from labelled
data to build accurate classifiers that are going to share its
knowledge under some rules. This approach allows remov-
ing some limitations that the common MPC systems have
and avoids the problems that the employment of standalone
classifiers produces in the stationary state prediction stage.
Moreover, the paper explains the MPC controller work-flow
and how this method can be applied.

In order to test this approach, we have selected the foundry
process because it is considered as one of the main factors
influencing the development of the world economy [3]. The se-
lected use case is focused on heavy-section foundries, trying to
avoid non-metallic inclusions with elongated and filamentary
aspect usually surrounded by degenerated graphite (lamellar
and/or vermicular shapes), also known as Dross [4]. Besides,
the improvement of the prediction step for this parameter
would lead foundries to lower reject rates and the subsequent
cost and time saving.

The remainder of this paper is organised as follows. Section



II summarises the state-of-the-art related to Model Predictive
Control systems. Section III details the casting production
process and presents the prediction target, the Dross defect.
Section IV describes different methods for combining classi-
fiers and how they can be adopted for foreseeing the stationary
state in the foundry plant. Section V describes the experiments
and presents results. Finally, Section VI concludes the paper
and outlines avenues for future work.

II. MODEL PREDICTIVE CONTROL SYSTEM

A. Definition
Model Predictive Control systems (MPC) are one of the

few advanced methods that had a significant impact on man-
ufacturing control engineering. They are applied to the manu-
facturing industry [5], [6] because they allow: (i) management
of multivariable control problems in a natural way, (ii) fault
management in the actuators, (iii) identification of problematic
situations related to phases of the process, due to its ability to
predict the impact of the changes to the current process and
(iv) to take into account the uncertainty of the model (also
known as the mismatch of plants/predictive models).

The methods for the prediction of the control plant were
developed based on several common ideas [7], [8] such as the
following ones:

• The employment of an explicit model to foresee the
process outputs over a time horizon t+1, which is set in
the near future.

• To retrieve a control sequence that minimises a cost
function, which will be the objective that the MPC will
try to optimise.

• To apply calculated control signals based on the results
achieved for the prediction systems.

The MPC system control technology is responsible for
driving the process from the current state to a different one
that improves the current situation of the plant. This control
process is the way to keep the plant producing within normality
and correction. The main objectives to control, in order of
importance, are as follows [1]:

1) Avoiding that inputs and outputs violate the constraints
defined for the production process.

2) Monitoring variables that cannot be modified in order to
know their state in every moment.

3) Directing the variables that can be modified in order to
calculate the optimal parameters for the manufacturing
process.

4) Avoiding sharp changes in the process.
5) Keeping a minimal control of the manufacturing process.
These objectives define the work flow that an MPC system

must carry out, shown in Fig. 1. More accurately, the control
steps are the following.

• Reading values from the process. The controller per-
forms the reading of all the variables, both types, those
it can modify and those it cannot.

• Estimate the stationary state. At this time, the controller
is responsible for determining the state of the manufac-
turing process in an instant of time t + 1, if the plant

Fig. 1. General work-flow followed by MPC controllers for each of their
executions.

continues producing with the same configuration. In this
paper we have focused on the optimisation of this task.

• Determination of the target state. In this step, the
controller tries to establish the optimal state in which we
want the manufacturing plant to work, avoiding major
changes in the process when the redirection is done.

• Determination of the optimisation path. This is one of
the most important stages. Its result will be the method
to modify the plant. Thus, in this working step, firstly,
the MPC has to select one of the possible trajectories to
arrive the desired state (e.g., multiple movements, a single
movement or an adaptation based on a function). Subse-
quently, the system avoids generating values that break
the constraints of the plant through several techniques
to calculate the penalisation of the proposed solution,
such as the definition of restricted points, areas, reference
trajectories or funnels.

• Outputs for the variables to modify. Finally, in this last
stage, the feedback to the plant is carried out.

B. Limitations

The majority of the current MPC suffers from limitations
generated by the basic theory behind them and the guidelines
created by their historical predecessors. Some of the most
important limitations are listed below [9]:

• Limited options to choose the model.
• Inefficient feedback to the plant.
• The special attention of experienced engineers and do-

main experts is required for the design and tuning of MPC
systems.

• There is no method to determine if the gathered data is
fully representative of the process.

• No statistical efficiency is addressed.
• There is a lack of methods to validate the prediction

systems.
• There is no systematic approach to the construction of the

MPC.
• The formulation of the controller is difficult .
• There are major problems to adapt the models to the

changes of the manufacturing process.
• The employment of non-linear predictive models is very

poor.



• There are no major advances in the generation of hybrid
MPC systems that are able to work with both discrete and
continuous variables simultaneously.

The research presented in this paper avoids some of these
limitations. Specifically, it increases the current options for
building the predictive model, while we allow the use of linear
and non-linear predictive models simultaneously. Furthermore,
a systematic approach is proposed to generate these models
through employing machine learning methods without involv-
ing domain experts.

III. USE CASE: DROSS INCLUSIONS IN THE
MANUFACTURING OF HEAVY-SECTION CAST PARTS

Foundry is a factory where metal is melted and poured into
specially shaped containers to produce different cast parts with
complex designs and close to their final shape. Although all of
the foundry processes are not equal, the work-flow performed
in foundries is very similar to the explained below [10].

1) Pattern, Mould and Core making. On one hand, mould-
ing and core-making patters respectively provides the
exterior and interior shape of the casting. The production
of heavy-section castings requires big moulds, which
are regularly created employing chemical-bonded sand
mixtures. Currently, the preparation of the moulds is a
handmade process.

2) Melting, Magnesium Treatment and Inoculation. In this
step, the designed metallic charges are incorporated in
a furnace. After melting, the chemical composition is
checked and adjusted to the previously known require-
ments. Then, in order to obtain the correct or desirable
graphite particles shape, it is added a nodularising agent.
When the reaction is accomplished, the achieved batch
is tested. Finally, due to it is necessary to guarantee the
spherical shape of the graphite and obtain a high nodule
counts, an inoculation process must be carried out just
before pouring the mould.

3) Pouring Process. Before starting the mould filling, the
treated and inoculated melt is usually placed in a basin
located in the top of the mould. Once the mixture is
ready, the molten material is poured onto the sand mould.
Later, the metal begins to cool. This step is one of the
most important because the majority of the defects can
appear during this phase.

4) Cast Part Separation. Once the cast part is cool enough
(e.g., for ferritic heavy-section castings, the temperature
must be lower than 600◦C), the sand is removed by
shaking the whole set in a grid. The removed sand is
recovered for further uses.

5) Quality Assurance and Finishing Step. After the previous
step, filling channels and feeding systems are removed
from the cast part. Then, the residual sand is removed by
shot-blasting. Finally, several controls are performed in
order to determine the validity of the cast part according
to the costumer requirements. If some defects appear in
the casting, it will require additional cleaning operations
to eliminate all affected areas and to fulfil the customer

requirements. This tasks strongly increase the cost of
each cast part. If the defects cannot be removed, the cast-
ing will be rejected. Finally, other finishing operations
are carried out (machining, painting, among others),
although this operations are not directly linked to the
foundry process.

During the whole process, several defects can be produced
in the castings. One of them is Dross inclusions. The term
‘Dross’ is usually referred to an internal slag inclusion, ox-
ides formed by the reaction of different chemical elements
involved in the nodularisation and inoculation treatments, with
elongated and filamentary aspect surrounded by degenerated
graphite particles.

The apparition of slag inclusion is usually produced by
a bad cleaning of the Magnesium treatments before pouring.
Although this fact, Dross defect can also appears even when
correctly skimmed melts are used. In this case, it is produced in
the internal mass of liquid irons before solidifying. Foundry
plants have identified three causes that are related with this
defect: (i) chemical composition of melt, (ii) turbulences when
filling the moulds and (iii) pouring temperatures. To charac-
terise the foundry process, we have selected more variables
(variables extracted from the whole manufacturing process and
related to the aforementioned steps) since monitoring only
these factors may not be enough to detect Dross defects. To
this end, we apply a simplification of the foundry process
developed by domain experts, representing the castings with
120 different variables, as we did in previous work [10].

IV. EVOLVING THE PREDICTION OF THE STATIONARY
STATE THROUGH A COMBINATION OF MACHINE-LEARNING

CLASSIFIERS

Classifiers by themselves are able to obtain good results,
but as discussed above, it is difficult to assure that a specific
classifier is particularly suitable for the prediction of one
defect. In order to avoid this problem, several studies propose
the combination of classifiers as a technique that was born with
the aim of obtaining better classification decisions despite of
incorporating a higher degree of complexity to the process
[11].

From a statistical point of view [12], assuming a labelled
dataset Z and a n number of different classifiers with relatively
good performance in making predictions for Z, we can select
one of them to face a classification problem, but there is a risk
of choosing a bad one. Therefore, the safest option is to use all
of them and average their outputs. The resulting classifier is
not necessarily better than the best classifier, but will decrease
or eliminate the risk of the use of a non appropriate classifier
for the task.

From a computational point of view [11], some supervised
machine-learning algorithms, in their learning phase, generate
models based on local maximum solutions. Thus, an aggrega-
tion of classifiers is much closer to the optimal classifier than
only one of them.

Although there are different combination methods, we have
discarded those methods that do not allow us to generate a



collective intelligence system for classification, which incor-
porates both linear and non-linear classifiers.

A. By Vote

The democracy for classifying elements is one of the oldest
strategies for decision making. The methods employed for this
research are:

• Majority Voting Rule. Defining that the labelled out-
puts of the classifiers are c-dimensional binary vectors
[di,1, ..., di,c]

T ∈ {0, 1}c, i = 1, ..., L where di,j = 1 if
the classifier Di determines x such as ωj , or 0 otherwise,
the combination of votes results in a set of classification
for the class ωk calculated as follows.

L∑
i=1

di,k =
c

max
j=1

L∑
i=1

di,j (1)

• Product Rule. Here, the probabilities are taking into
account for the final calculation [13]. This rule represents
the joint probability distribution of the measurements
taken from the classifiers. Moreover, it is assumed that the
representations are conditionally statistically independent.
The product rule quantifies the probability of a hypothesis
by combining the a posteriori probabilities generated by
the classifiers. Therefore, we assign the label Z → ωj if

P−(R−1)(ωj)

R∏
i=1

P (ωj |xi) =

m
max
k=1

P−(R−1)(ωk)

R∏
i=1

P (ωk|xi) (2)

• Average Rule. This rule is derived from the Sum Rule
(see equation 3) to, subsequently, make a division by
the number of standalone classifiers employed, R, as
denominator [13].

(1−R)P (ωj) +

R∑
i=1

P (ωj |xi) =

m
max
k=1

[
(1−R)P (ωk) +

R∑
i=1

P (ωk|xi)

]
(3)

• Max Rule. For the Max Rule [13], we start with the
Sum Rule (see equation 3) and obviating the product of
a posteriori probabilities and assuming prior equalities,
we will assign Z → ωj if

R
max
i=1

P (ωk|xi) =
m

max
k=1

R
max
i=1

P (ωk|xi) (4)

• Min Rule. For the Min Rule [13], we start with the
Product Rule (see equation 2) and obviating the product
of a posteriori probabilities and assuming prior equalities,
we will assign Z → ωj if

medRi=1 P (ωj |xi) =
m

max
k=1

medRi=1 P (ωk|xi) (5)

B. Grading

In this method, the standalone classifiers are evaluated
using the k-fold cross-validation [14]. Grading builds nc
training datasets, one for each standalone classifier k, adding
the predictions gik to the original dataset as the new class.
prMetaik is the probability that the standalone classifier k is
going to foresee the instance i and is calculated by the meta-
classifier of k. In this way, the final probability for the class
l and the instance i, if there is, at least, one meta-classifier
which is going to foresee the result in a correct manner (i.e.,
prMetaik > 0.5), is calculated by the following formula:

prGrdil =
∑
{prMetaik|cik = l ∧ prMetaik > 0.5} (6)

where cik = argmaxl{pikl}, in other words, the prediction of
the standalone classifier k for i using the maximum likelihood.

The classification step is as follows [15]. First, each stan-
dalone classifier makes a prediction. Second, the obtained
results are qualified. And finally, the classification is derived
using only the positive results. Conflicts are solved using the
by vote approach.

C. Stacking

The stacking method [16] is another generalisation based
on the k-fold cross validation combination. For the learning
phase of standalone classifiers, the training set θ is divided
into k partitions and they are in turn split in 2 sets, usually
disjoints (θi1, θi2). The first set of θi1 define the space of
level 0. Then, for each ki partition of θ, it is generated a
set of k transformation numbers that represents either (i) the
assumptions made by standalone classifier or (ii) the input
component θi2 or (iii) the vector to connect both θi1 and θi2.
These points are the training set for the level 1 meta-classifier.

For the classification process, firstly, we carry out a ques-
tion to the classifiers in level 0. Secondly, we apply the
transformations to produce the input dataset for the level 1.
Subsequently, level 1 meta-classifier derive the solution. And
finally, the response is transformed back into the level 0
space to provide the final result. The whole process is known
as stacked generalisation and can be more complex adding
multiple stacking levels.

D. MultiScheme

This method employs a combination rule based on the
results obtained by the cross validation. MultiScheme method
is performed through the calculation of the mean for each
instance i and the error rate (i.e., the mean square error)
of the standalone classifier G. Thus, using this measures,
MultiScheme method is able to determine which classifier
should be the most accurate. Specifically, the error estimation
is made as follows.

CV (G, θ) ≡
∑

i[G(θi1, input of θi2)(output of θi2)]2

m
(7)



V. EXPERIMENTAL RESULTS

In order to test our method, a dataset from a real foundry
specialised in heavy-section nodular iron castings has been
collected, accurately, in bushings for wind turbines. Cast parts
that contain this defect must be rejected due to very restrictive
quality standards. The gathered dataset contains attributes from
the whole foundry process. In fact, it includes 120 different
parameters related with raw materials, chemical composition or
melt, thermal analysis data, inoculation, magnesium treatment,
pouring time and pouring temperature, among others. We have
worked with 89 different references.

This dataset was labelled with the volume affected by Dross
defect measured in 2261 ultrasonic inspections. With the aim
of evaluating the precision of the selected meta-classification
methods, the final level of Dross was discretised in 5 different
categories, applying a normal distribution-based discretisation.
The ranges are the followings.

1) Dross ≤ 2.5
2) 2.5 < Dross ≤ 3.5
3) 3.5 < Dross ≤ 4.5
4) 4.5 < Dross ≤ 6.5
5) Dross > 6.5

Specially, we have conducted the next methodology in order
to evaluate properly the combination of classifiers:

• Cross validation: We have performed a k-fold cross
validation [14] with k = 10. In this way, our dataset
is 10 times split into 10 different sets of learning.

• Learning the model: We have made the learning phase
of each algorithm with each training dataset, applying
different parameters or learning algorithms depending
on the model. More accurately, we have used the same
classifiers that we presented in [10].

• Learning the combination of the classifiers: After the
previous task, we employed the aforementioned combi-
nation methods. In this paper, we tested the following
meta-classification methods:

– By vote: For these experiments, we have used the
majority vote rule, the product rule , the average
rule , the max rule and the min rule [11] [13].

– Grading: We have performed our experiments using
the following first level classifiers: a Naı̈ve Bayes,
Tree Augmented Naı̈ve, a K-Nearest Neighbour where
1 ≤ k ≤ 5 and a Support Vector Machine (SVM)
with Polynomial Kernel.

– Stacking: To create the second space classifiers, we
have tested the same classifiers used for creating the
first level classifiers in the Grading method.

– MultiScheme: In this research, we have used this
meta-classifier as it is, combining the results using
the cross validation outputs and the error rates.

• Testing the model: For each combination method, we
have evaluated the percent of correctly classified instan-
ces and the area under the ROC curve (AUC), which
represents the relation between false negatives and false
positives [17].

TABLE I
RESULTS OF DROSS PREDICTION IN TERMS OF ACCURACY AND AREA

UNDER THE ROC CURVE (AUC) USING STANDALONE CLASSIFIERS [10].

Classifier Accuracy(%) AUC
Naı̈ve Bayes 47.86±3.06 0.7690±0.05
BN: K2 62.63±2.94 0.8939±0.03
BN: TAN 74.92±2.81 0.9560±0.02
KNN K = 1 30.20±2.89 0.5888±0.05
KNN K = 2 30.67±2.78 0.6323±0.05
KNN K = 3 30.25±2.93 0.6602±0.05
KNN K = 4 31.22±2.89 0.6672±0.05
KNN K = 5 30.99±2.82 0.6753±0.05
SVM: Polynomial Kernel 57.07±2.76 0.8135±0.04
SVM: Normalised Polynomial Kernel 50.92±3.08 0.7779±0.04
SVM: RBF Kernel 44.78±2.79 0.7165±0.04
SVM: Pearson VII Kernel 62.59±2.72 0.8239±0.04
DT: J48 62.97±3.23 0.8157±0.06
DT: RandomForest N = 10 70.23±3.00 0.8999±0.03
DT: RandomForest N = 20 72.54±2.55 0.9223±0.02
DT: RandomForest N = 30 73.33±2.56 0.9296±0.02
DT: RandomForest N = 40 73.65±2.39 0.9334±0.02
DT: RandomForest N = 50 73.87±2.31 0.9356±0.02

On one hand, Table I shows the results achieved in our
previous research [10] for Dross prediction in terms of ac-
curacy and AUC. More accurately, we can realise that the
best classifiers in that experiment were the Bayesian networks
trained employing Tree Augmented Naı̈ve (with an accuracy
level of 74.92% and an AUC of 0.9560) and random forests
(achieving an accuracy bigger than 70% and an AUC bigger
than 0.92).

TABLE II
RESULTS OF DROSS PREDICTION IN TERMS OF ACCURACY AND AREA

UNDER THE ROC CURVE (AUC) USING META-CLASSIFIERS.

Classifier Accuracy(%) AUC
Stacking (TAN) 71.68±3.76 0.9422±0.02
Stacking (Naı̈ve Bayes) 68.31±2.86 0.9275±0.03
Stacking (KNN k=1) 65.64±3.17 0.7665±0.05
Stacking (KNN k=2) 65.59±2.95 0.8273±0.04
Stacking (KNN k=3) 69.31±2.67 0.8501±0.04
Stacking (KNN k=4) 70.82±2.65 0.8662±0.04
Stacking (KNN k=5) 71.57±2.43 0.8774±0.04
Stacking (J48) 67.17±3.48 0.7991±0.08
Stacking (SVM with Polynomial Kernel) 75.61±2.73 0.9297±0.03
Grading (TAN) 26.16±3.77 0.4985±0.01
Grading (Naı̈ve Bayes) 29.77±4.31 0.4881±0.02
Grading (KNN k=1) 24.50±3.77 0.4947±0.01
Grading (KNN k=2) 24.04±3.62 0.4939±0.01
Grading (KNN k=3) 24.73±3.78 0.4951±0.01
Grading (KNN k=4) 24.62±3.86 0.4964±0.01
Grading (KNN k=5) 25.89±3.73 0.4946±0.01
Grading (SVM with Polynomial Kernel) 25.22±2.19 0.5000±0.00
MultiScheme 74.60±2.66 0.9471±0.02
By Vote (Average Rule) 56.45±3.37 0.8645±0.04
By Vote (Product Rule) 20.52±5.62 0.4985±0.01
By Vote (Majority Voting Rule) 30.88±2.93 0.5372±0.03
By Vote (Min Rule) 20.44±5.56 0.4985±0.01
By Vote (Max Rule) 61.06±8.43 0.8422±0.05

On the other hand, Table II illustrates the results accom-
plished in our experiment applying meta-classification meth-
ods. In this case, we can realise that the best meta-classification



method, specifically, stacking with a SVM with polynomial
kernel as second space classifier; enhances the best standalone
classifier in terms of accuracy. Actually, the stacking method
accomplish better predictions than other methods. Neverthe-
less, this meta-classification method is nearly followed by one
of the simplest one, the MultiScheme. Furthermore, although
the By Vote method does not obtain the same results, it is
really close to the worst stacking method.

Regarding the area under the ROC curve, the meta-
classifiers cannot reach the same results of the standalone
classifiers. However, the calculated AUC of the best meta-
classifier is really close to the previous ones’. Precisely, the
stacking method that uses Tree Augmented Naı̈ve gets 0.9422,
the best method in terms of accuracy level achieves 0.9297
and MultiScheme reaches an AUC of 0.9471.

Due to the achieved results have a great degree of similarity,
the employment of meta-classifiers are able to foresee the
Dross defect in high precision foundries. In our case, the
good results achieved by the stacking method that uses SVM
with polynomial kernel show that this approach can handle the
stationary state t+1 prediction as we did in our previous work
with other defects (i.e., microshrinkages and mechanical prop-
erties) [18]. Therefore, combining several meta-classification
methods, firstly, we can reduce the cost and the duration of
the actual testing methods and, secondly, we can improve
the prediction step of our new generation MPC system that
employs machine learning techniques.

This research can be deployed, also, as a prediction tool
that can work in the following way: (i) the operator carries
out a prediction experiment to determine the final result of
the casting regarding the Dross problem, (ii) if the volume
of the Dross is bigger than the permissible threshold, the
operator might change the manufacturing parameters to adjust
the production or, even, he can produce another reference.

VI. CONCLUSIONS

The Dross defect is a non-metallic inclusion with elongated
and filamentary aspect usually surrounded by a degenerated
graphite. Unfortunately, this defect has to be tested once the
production is finished, which implies a re-manufacturing of the
casting when the Dross defect is found.

Hence, our previous research [10], which pioneers the ap-
plication of supervised machine-learning methods to discover
the apparition of this defect in advance, has been extended in
this paper, presenting a new way for enhancing the stationary
state prediction in MPC systems through the combination of
several standalone classifiers.

Although some meta-classifiers do not achieve good results,
there are a set of them that approximates the results achieved
by the best standalone classifiers. In fact, the stacking built
with a Support Vector Machine, which employs a Polynomial
Kernel, outperforms the best standalone classifier in terms
of accuracy. Regarding the error rates, the meta-classifier
cannot improve the results achieved by the Bayesian networks,
nevertheless, they are really close. These results illustrate the
theory presented by Kuncheva [11].

Consequently, further work will be focused in three main
directions. First, we plan to extend our tests to be able to
predict other defects with the aim of generating a global
system of incident analysis. Second, we plan to carry out a
research to find a quick manner of updating the prediction
models. And finally, we plan to test this prediction models in
our optimisation algorithm [19], generating a complete MPC
system that can be deployed in a real foundry plant.
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